COVID POMDP

Infection Dynamics

I(t) = \int_0^\infty I(t-\tau)\beta(\tau)d\tau

Renewal Equation

Individual Infectiousness

Infection Age

Incident Infections

\beta(\tau)
\tau
I
I(t) = \int_0^\infty I(t-\tau)\beta(\tau)d\tau
\beta(\tau)

Need

Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance

Larremore et al.

\beta(\tau) \propto \log_{10}(\text{viral load})

Viral load represented by piecewise-linear hinge function

(t_0, 3)
(t_{\text{peak}}, V_{\text{peak}})
(t_f,6)
t_0 \sim \mathcal{U}[2.5,3.5]
t_\text{peak} - t_0 \sim 0.2 + \text{Gamma}(1.8)
V_\text{peak} \sim \mathcal{U}[7,11]
t_f - t_\text{peak} \sim \mathcal{U}[5,10]

Test sensitivity is secondary to frequency and turnaround time for COVID-19 surveillance

Larremore et al.

Viral load represented by piecewise-linear hinge function

(t_0, 3)
(t_{\text{peak}}, V_{\text{peak}})
(t_f,6)
t_0 \sim \mathcal{U}[2.5,3.5]
t_\text{peak} - t_0 \sim 0.2 + \text{Gamma}(1.8)
V_\text{peak} \sim \mathcal{U}[7,11]
t_f - t_\text{peak} \sim \mathcal{U}[5,10]

Parametric Model Fitting

SIR Model

\dot{S} = -\beta I S \\ \dot{I} = \beta I S - \alpha I \\ \dot{R} = \alpha I

Susceptible

Infectious

Recovered

SEIR Model

\dot{S} = -\beta I S \\ \dot{E} = \beta I S - \gamma E \\ \dot{I} = \gamma E - \alpha I \\ \dot{R} = \alpha I

Susceptible

Infectious

Recovered

Exposed

\dot{S} = -\beta I S \\ \dot{E} = \beta I S - \gamma E \\ \dot{I} = \gamma E - \alpha I \\ \dot{R} = \alpha I
\dot{S} = -\beta I S \\ \dot{I} = \beta I S - \alpha I \\ \dot{R} = \alpha I
\alpha \leftarrow \alpha + \delta T
\gamma \leftarrow \gamma + \epsilon T
\dot{S} = -\beta I S \\ \dot{I} = \beta I S - (\alpha + \delta T) I \\ \dot{R} = (\alpha + \delta T) I
\dot{S} = -\beta I S \\ \dot{E} = \beta I S - (\gamma + \epsilon T) E \\ \dot{I} = (\gamma + \epsilon T) E - \alpha I \\ \dot{R} = \alpha I

POMDP Formulation

 

 

  • Susceptible Population Count
  • Infected Population Count
  • Recovered Population Count
  • Positive tests that are to be distributed
  • Action taken on previous time step
\mathcal{S}

 

 

  • Proportion of population tested
\mathcal{A}

 

 

  • Quantity of positive tests
\mathcal{O}
\mathcal{R}
-\left\{c_I \left(\frac{1}{N}\sum_{i=1}^{H}I_i\right)^2 + c_T T^2 + c_{TR}(T_k - T_{k-1})^2\right\}
\mathcal{T}
\mathcal{Z}

Positive test if viral load > LOD

\mathcal{Z}
T_{pos,\tau} \sim \text{Bin}(n_\tau,p_\tau)

- tested infectious population

p_\tau
n_\tau

- probability of testing positive

\mathcal{Z}

Controlled Model Results

c_I = 100.0 \\ c_T = 1.0 \\ c_{TR} = 50.0
c_I = 100.0 \\ c_T = 1.0 \\ c_{TR} = 10.0
c_I = 100.0 \\ c_T = 1.0 \\ c_{TR} = 40.0
c_I = 100.0 \\ c_T = 1.0 \\ c_{TR} = 10.0

Future Plans

MPC with certainty equivalence works too well

  • Unimodal belief
  • Quadratic cost
  • Continuous action space
  • High frequency - low amplitude effect of noise

Possible avenue to more interesting results:

 

Introduce second viral strain

  • Hopefully yields bimodal belief
  • State space dimensionality almost doubled

Copy of Covid POMDP

By Zachary Sunberg

Copy of Covid POMDP

  • 293