Breaking the Curse of Dimensionality in Decision-Making for Autonomous Systems

 

Assistant Professor Zachary Sunberg

University of Colorado Boulder

September 6th, 2024

Autonomous Decision and Control Laboratory

cu-adcl.org

  • Algorithmic Contributions
    • Scalable algorithms for partially observable Markov decision processes (POMDPs)
    • Motion planning with safety guarantees
    • Game theoretic algorithms
  • Theoretical Contributions
    • Particle POMDP approximation bounds
  • Applications
    • Space Domain Awareness
    • Autonomous Driving
    • Autonomous Aerial Scientific Missions
    • Search and Rescue
    • Space Exploration
    • Ecology
  • Open Source Software
    • POMDPs.jl Julia ecosystem

PI: Prof. Zachary Sunberg

PhD Students

Postdoc

The ADCL creates autonomy that is safe and efficient despite uncertainty

Two Objectives for Autonomy

EFFICIENCY

SAFETY

Minimize resource use

(especially time)

Minimize the risk of harm to oneself and others

Safety often opposes Efficiency

Example 1: Autonomous Driving

Tweet by Nitin Gupta

29 April 2018

https://twitter.com/nitguptaa/status/990683818825736192

Example 1:
Autonomous Driving

Example 2: Tornados

Video: Eric Frew

Example 2: Tornados

Video: Eric Frew

Example 2: Tornados

Video: Eric Frew

Example 2: Tornados

Example 3: Search and Rescue

What do they have in common?

Driving: what are the other road users going to do?

Tornado Forecasting: what is going on in the storm?

Search and Rescue: where is the lost person?

All are sequential decision-making problems with uncertainty!

All can be modeled as a POMDP (with a very large state and observation spaces).

Outline

  1. The Promise and Curse of POMDPs
  2. Breaking the Curse
  3. Applications
  4. Multiple Agents

Part I: The Promise and Curse of POMDPs

Types of Uncertainty

Aleatory

Epistemic (Static)

Epistemic (Dynamic)

Interaction

MDP

RL

POMDP

Game

Markov Decision Process (MDP)

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward

Aleatory

\([x, y, z,\;\; \phi, \theta, \psi,\;\; u, v, w,\;\; p,q,r]\)

\(\mathcal{S} = \mathbb{R}^{12}\)

\(\mathcal{S} = \mathbb{R}^{12} \times \mathbb{R}^\infty\)

\[\underset{\pi:\, \mathcal{S} \to \mathcal{A}}{\text{maximize}} \quad \text{E}\left[ \sum_{t=0}^\infty R(s_t, a_t) \right]\]

Reinforcement Learning

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward

Aleatory

Epistemic (Static)

\([x, y, z,\;\; \phi, \theta, \psi,\;\; u, v, w,\;\; p,q,r]\)

\(\mathcal{S} = \mathbb{R}^{12}\)

\(\mathcal{S} = \mathbb{R}^{12} \times \mathbb{R}^\infty\)

Partially Observable Markov Decision Process (POMDP)

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward
  • \(\mathcal{O}\) - Observation space
  • \(Z:\mathcal{S} \times \mathcal{A}\times \mathcal{S} \times \mathcal{O} \to \mathbb{R}\) - Observation probability distribution

Aleatory

Epistemic (Static)

Epistemic (Dynamic)

\([x, y, z,\;\; \phi, \theta, \psi,\;\; u, v, w,\;\; p,q,r]\)

\(\mathcal{S} = \mathbb{R}^{12}\)

\(\mathcal{S} = \mathbb{R}^{12} \times \mathbb{R}^\infty\)

\begin{aligned} & \mathcal{S} = \mathbb{Z} \quad \quad \quad ~~ \mathcal{O} = \mathbb{R} \\ & s' = s+a \quad \quad o \sim \mathcal{N}(s, |s-10|) \\ & \mathcal{A} = \{-10, -1, 0, 1, 10\} \\ & R(s, a) = \begin{cases} 100 & \text{ if } a = 0, s = 0 \\ -100 & \text{ if } a = 0, s \neq 0 \\ -1 & \text{ otherwise} \end{cases} & \\ \end{aligned}

State

Timestep

Accurate Observations

Goal: \(a=0\) at \(s=0\)

Optimal Policy

Localize

\(a=0\)

POMDP Example: Light-Dark

Solving a POMDP

Environment

Belief Updater

Planner

\(a = +10\)

True State

\(s = 7\)

Observation \(o = -0.21\)

\(b\)

\[b_t(s) = P\left(s_t = s \mid b_0, a_0, o_1 \ldots a_{t-1}, o_{t}\right)\]

\[ = P\left(s_t = s \mid b_{t-1}, a_{t-1}, o_{t}\right)\]

\(Q(b, a)\)

\(O(|\mathcal{S}|^2)\)

Online Tree Search in MDPs

Time

Estimate \(Q(s, a)\) based on children

Bayesian Belief Updates

Environment

Belief Updater

Policy/Planner

\(b\)

\(a\)

\[b_t(s) = P\left(s_t = s \mid b_0, a_0, o_1 \ldots a_{t-1}, o_{t}\right)\]

True State

\(s = 7\)

Observation \(o = -0.21\)

\(O(|S|^2)\)

\[ = P\left(s_t = s \mid b_{t-1}, a_{t-1}, o_{t}\right)\]

Curse of History in POMDPs

Environment

Policy/Planner

\(a\)

True State

\(s = 7\)

Observation \(o = -0.21\)

Optimal planners need to consider the entire history

\(h_t = (b_0, a_0, o_1, a_1, o_2 \ldots a_{t-1}, o_{t})\)

A POMDP is an MDP on the Belief Space

POMDP \((S, A, T, R, O, Z)\) is equivalent to MDP \((S', A', T', R')\)

  • \(S' = \Delta(S)\)
  • \(A' = A\)
  • \(T'\) defined by belief updates (\(T\) and \(Z\))
  • \(R'(b, a) = \underset{s \sim b}{E}[R(s, a)]\)

One new continuous state dimension for each state in \(S\)!

Why are POMDPs difficult?

  1. Curse of History
  2. Curse of dimensionality
    1. State space
    2. Observation space
    3. Action space

Tree size: \(O\left(\left(|A||O|\right)^D\right)\)

POMDP (decision problem) is PSPACE Complete

Curse of Dimensionality

\(d\) dimensions, \(k\) segments \(\,\rightarrow \, |S| = k^d\)

1 dimension

e.g. \(s = x \in S = \{1,2,3,4,5\}\)

\(|S| = 5\)

2 dimensions

e.g. \(s = (x,y) \in S = \{1,2,3,4,5\}^2\)

\(|S| = 25\)

3 dimensions

e.g. \(s = (x,y,x_h) \in S = \{1,2,3,4,5\}^3\)

\(|S| = 125\)

(Discretize each dimension into 5 segments)

\(x\)

\(y\)

\(x_h\)

Part II: Breaking the Curse

Integration

Find \(\underset{s\sim b}{E}[f(s)]\)

\[=\sum_{s \in S} f(s) b(s)\]

Monte Carlo Integration

\(Q_N \equiv \frac{1}{N} \sum_{i=1}^N f(s_i)\)

\(s_i \sim b\)     i.i.d.

\(\text{Var}(Q_N) = \text{Var}\left(\frac{1}{N} \sum_{i=1}^N f(s_i)\right)\)

\(= \frac{1}{N^2} \sum_{i=1}^N\text{Var}\left(f(s_i)\right)\)

\(= \frac{1}{N} \text{Var}\left(f(s_i)\right)\)

\[P(|Q_N - E[f(s_i)]| \geq \epsilon) \leq \frac{\text{Var}(f(s_i))}{N \epsilon^2}\]

(Bienayme)

(Chebyshev)

Curse of dimensionality!

Particle Filter POMDP Approximation

\[b(s) \approx \sum_{i=1}^N \delta_{s}(s_i)\; w_i\]

[Sunberg and Kochenderfer, ICAPS 2018, T-ITS 2022]

How do we prove convergence?

POMDP Assumptions for Proofs

Continuous \(S\), \(O\); Discrete \(A\)

No Dirac-delta observation densities

Bounded Reward

Generative model for \(T\); Explicit model for \(Z\)

Finite Horizon

Only reasonable beliefs

Sparse Sampling-\(\omega\)

Key 1: Self Normalized Infinite Renyi Divergence Concentation

\(\mathcal{P}\): state distribution conditioned on observations (belief)

\(\mathcal{Q}\): marginal state distribution (proposal)

Key 2: Sparse Sampling

Expand for all actions (\(\left|\mathcal{A}\right| = 2\) in this case)

...

Expand for all \(\left|\mathcal{S}\right|\) states

\(C=3\) states

SS-\(\omega\) is close to Belief MDP

SS-\(\omega\) close to Particle Belief MDP (in terms of Q)

PF Approximation Accuracy

\[|Q_{\mathbf{P}}^*(b,a) - Q_{\mathbf{M}_{\mathbf{P}}}^*(\bar{b},a)| \leq \epsilon \quad \text{w.p. } 1-\delta\]

For any \(\epsilon>0\) and \(\delta>0\), if \(C\) (number of particles) is high enough,

[Lim, Becker, Kochenderfer, Tomlin, & Sunberg, JAIR 2023]

No direct dependence on \(|\mathcal{S}|\) or \(|\mathcal{O}|\)!

Particle belief planning suboptimality

\(C\) is too large for any direct safety guarantees. But, in practice, works extremely well for improving efficiency.

[Lim, Becker, Kochenderfer, Tomlin, & Sunberg, JAIR 2023]

Why are POMDPs difficult?

  1. Curse of History
  2. Curse of dimensionality
    1. State space
    2. Observation space
    3. Action space

Tree size: \(O\left(\left(|A|C\right)^D\right)\)

Solve simplified surrogate problem for policy deep in the tree

[Lim, Tomlin, and Sunberg, 2021]

Easy MDP to POMDP Extension

Part III: Applications

Example 1: Autonomous Driving

POMDP Formulation

\(s=\left(x, y, \dot{x}, \left\{(x_c,y_c,\dot{x}_c,l_c,\theta_c)\right\}_{c=1}^{n}\right)\)

\(o=\left\{(x_c,y_c,\dot{x}_c,l_c)\right\}_{c=1}^{n}\)

\(a = (\ddot{x}, \dot{y})\), \(\ddot{x} \in \{0, \pm 1 \text{ m/s}^2\}\), \(\dot{y} \in \{0, \pm 0.67 \text{ m/s}\}\)

R(s, a, s') = \text{in\_goal}(s') - \lambda \left(\text{any\_hard\_brakes}(s, s') + \text{any\_too\_slow}(s')\right)

Ego external state

External states of other cars

Internal states of other cars

External states of other cars

  • Actions shielded (based only on external states) so they can never cause crashes
  • Braking action always available

Efficiency

Safety

MDP trained on normal drivers

MDP trained on all drivers

Omniscient

POMCPOW (Ours)

Simulation results

[Sunberg & Kochenderfer, T-ITS 2023]

Navigation among Pedestrians

[Gupta, Hayes, & Sunberg, AAMAS 2022]

Previous solution: 1-D POMDP (92s avg)

Our solution (65s avg)

State:

  • Vehicle physical state
  • Human physical state
  • Human intention

Conventional 1DOF POMDP

Multi-DOF POMDP

Pedestrian Navigation

[Gupta, Hayes, & Sunberg, AAMAS 2021]

Meteorology

  • State: (physical state of aircraft, which forecast is the truth)
  • Action: (flight direction, drifter deploy)
  • Reward: Terminal reward for correct weather prediction

Example 2: Tornado Prediction

Drone Search and Rescue

State:

  • Location of Drone
  • Location of Human

Baseline

Our POMDP Planner

[Ray, Laouar, Sunberg, & Ahmed, ICRA 2023]

Drone Search and Rescue

[Ray, Laouar, Sunberg, & Ahmed, ICRA 2023]

Space Domain Awareness

(Result for simplified dynamical system)

State:

  • Position, velocity of object-of-interest
  • Anomalies: navigation failure, suspicious maneuver, thruster failure, etc.

Innovation: Large language models allow analysts to quickly specify anomaly hypotheses

Catalog Maintenance Plan

Practical Safety Guarantees

Three Contributions

  • Recursive constraints (solves "stochastic self-destruction")
  • Undiscounted POMDP solutions for estimating probability
  • Much faster motion planning with Gaussian uncertainty

State:

  • Position of rover
  • Environment state: e.g. traversibility
  • Internal status: e.g. battery, component health

[Ho et al., UAI 24], [Ho, Feather, Rossi, Sunberg, & Lahijanian, UAI 24], [Ho, Sunberg, & Lahijanian, ICRA 22]

Explainability: Reward Reconciliation

Calculate Outcomes

Calculate Weight Update

\( \frac{\epsilon - \alpha_a \cdot \Delta \mu_{h-a}}{\Delta\mu_{h-j} \cdot \Delta \mu_{h-a}} \Delta\mu_{h-j}\)

Estimate Weight with Update

\( \alpha[2]\)

\( \alpha[1]\)

\( a_{h}\) - optimal

\( a_{a}\) - optimal

\( \alpha_{h}\)

\( \alpha_{a}\)

\( R(s,a) = \alpha \cdot \boldsymbol{\phi}(s,a)\)

\(a_a\) outcomes: \(\mu_a\)

\(a_h\) outcomes: \(\mu_h\)

\(a_a\)

\(a_h\)

\( \hat{\alpha}_{h}\)

\(a_h\)

\(a_a\)

[Kraske, Saksena, Buczak, & Sunberg, ICAA 2024]

Part IV: Multiple Agents

Partially Observable Markov Decision Process (POMDP)

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward
  • \(\mathcal{O}\) - Observation space
  • \(Z:\mathcal{S} \times \mathcal{A}\times \mathcal{S} \times \mathcal{O} \to \mathbb{R}\) - Observation probability distribution

Aleatory

Epistemic (Static)

Epistemic (Dynamic)

Partially Observable Stochastic Game (POSG)

Aleatory

Epistemic (Static)

Epistemic (Dynamic)

Interaction

  • \(\mathcal{S}\) - State space
  • \(T(s' \mid s, \bm{a})\) - Transition probability distribution
  • \(\mathcal{A}^i, \, i \in 1..k\) - Action spaces
  • \(R^i(s, \bm{a})\) - Reward function (cooperative, opposing, or somewhere in between)
  • \(\mathcal{O}^i, \, i \in 1..k\) - Observation spaces
  • \(Z(o^i \mid \bm{a}, s')\) - Observation probability distributions

Game Theory

Nash Equilibrium: All players play a best response.

Optimization Problem

(MDP or POMDP)

\(\text{maximize} \quad f(x)\)

Game

Player 1: \(U_1 (a_1, a_2)\)

Player 2: \(U_2 (a_1, a_2)\)

Collision

Example: Airborne Collision Avoidance


 

 

Player 1

Player 2

Up

Down

Up

Down

-6, -6

-1, 1

1, -1

-4, -4

Collision

Mixed Strategies

Nash Equilibrium \(\iff\) Zero Exploitability

\[\sum_i \max_{\pi_i'} U_i(\pi_i', \pi_{-i})\]

No Pure Nash Equilibrium!

Instead, there is a Mixed Nash where each player plays up or down with 50% probability.

If either player plays up or down more than 50% of the time, their strategy can be exploited.

Exploitability (zero sum):

Strategy (\(\pi_i\)): probability distribution over actions


 

 

Up

Down

Up

Down

-1, 1

1, -1

1, -1

-1, 1

Collision

Collision

Space Domain Awareness Games

POSG Example: Missile Defense

POMDP Solution:

  1. Assume a distribution for the missile's actions
  2. Update belief according to this distribution
  3. Use a POMDP planner to find the best defensive action

Nash equilibrium: All players play a best response to the other players

Fundamentally impossible for POMDP solvers to compute.

May include stochastic behavior (bluffing)

A shrewd missile operator will use different actions, invalidating our belief

Defending against Maneuverable Hypersonic Weapons: the Challenge

Ballistic

Maneuverable Hypersonic

  1. Sense
  2. Estimate
  3. Intercept

Every maneuver involves tradeoffs

  • Energy
  • Targets
  • Intentions

Simplified SDA Game

1

2

...

...

...

...

...

...

...

\(N\)

[Becker & Sunberg, AMOS 2022]

[Becker & Sunberg, AMOS 2022]

Counterfactual Regret Minimization Training

[Becker & Sunberg, AMOS 2022]

[Becker & Sunberg, AMOS 2022]

Finding a Nash Equilibrium: Poker

Image: Russel & Norvig, AI, a modern approach

P1: A

P1: K

P2: A

P2: A

P2: K

Tree Search Algorithms for POSGs

[Becker & Sunberg, NeurIPS 2024 (Under Review)]

Tree Search Algorithms for POSGs

[Becker & Sunberg, NeurIPS 2024 (Under Review)]

Thank You!

Funding orgs: (all opinions are my own)

VADeR

Autonomous Decision and Control Laboratory

cu-adcl.org

  • Algorithmic Contributions
    • Scalable algorithms for partially observable Markov decision processes (POMDPs)
    • Motion planning with safety guarantees
    • Game theoretic algorithms
  • Theoretical Contributions
    • Particle POMDP approximation bounds
  • Applications
    • Space Domain Awareness
    • Autonomous Driving
    • Autonomous Aerial Scientific Missions
    • Search and Rescue
    • Space Exploration
    • Ecology
  • Open Source Software
    • POMDPs.jl Julia ecosystem

PI: Prof. Zachary Sunberg

PhD Students

Postdoc

Part V: Open Source Research Software

Good Examples

  • Open AI Gym interface
  • OMPL
  • ROS

Challenges for POMDP Software

  1. There is a huge variety of
    • Problems
      • Continuous/Discrete
      • Fully/Partially Observable
      • Generative/Explicit
      • Simple/Complex
    • Solvers
      • Online/Offline
      • Alpha Vector/Graph/Tree
      • Exact/Approximate
    • Domain-specific heuristics
  2. POMDPs are computationally difficult.

Explicit

Black Box

("Generative" in POMDP lit.)

\(s,a\)

\(s', o, r\)

Previous C++ framework: APPL

"At the moment, the three packages are independent. Maybe one day they will be merged in a single coherent framework."

Open Source Research Software

  • Performant
  • Flexible and Composable
  • Free and Open
  • Easy for a wide range of people to use (for homework)
  • Easy for a wide range of people to understand

C++

Python, C++

Python, Matlab

Python, Matlab

Python, C++

2013

We love [Matlab, Lisp, Python, Ruby, Perl, Mathematica, and C]; they are wonderful and powerful. For the work we do — scientific computing, machine learning, data mining, large-scale linear algebra, distributed and parallel computing — each one is perfect for some aspects of the work and terrible for others. Each one is a trade-off.

We are greedy: we want more.

2012

POMDPs.jl - An interface for defining and solving MDPs and POMDPs in Julia

Mountain Car

partially_observable_mountaincar = QuickPOMDP(
    actions = [-1., 0., 1.],
    obstype = Float64,
    discount = 0.95,
    initialstate = ImplicitDistribution(rng -> (-0.2*rand(rng), 0.0)),
    isterminal = s -> s[1] > 0.5,

    gen = function (s, a, rng)        
        x, v = s
        vp = clamp(v + a*0.001 + cos(3*x)*-0.0025, -0.07, 0.07)
        xp = x + vp
        if xp > 0.5
            r = 100.0
        else
            r = -1.0
        end
        return (sp=(xp, vp), r=r)
    end,

    observation = (a, sp) -> Normal(sp[1], 0.15)
)
using POMDPs
using QuickPOMDPs
using POMDPPolicies
using Compose
import Cairo
using POMDPGifs
import POMDPModelTools: Deterministic

mountaincar = QuickMDP(
    function (s, a, rng)        
        x, v = s
        vp = clamp(v + a*0.001 + cos(3*x)*-0.0025, -0.07, 0.07)
        xp = x + vp
        if xp > 0.5
            r = 100.0
        else
            r = -1.0
        end
        return (sp=(xp, vp), r=r)
    end,
    actions = [-1., 0., 1.],
    initialstate = Deterministic((-0.5, 0.0)),
    discount = 0.95,
    isterminal = s -> s[1] > 0.5,

    render = function (step)
        cx = step.s[1]
        cy = 0.45*sin(3*cx)+0.5
        car = (context(), circle(cx, cy+0.035, 0.035), fill("blue"))
        track = (context(), line([(x, 0.45*sin(3*x)+0.5) for x in -1.2:0.01:0.6]), stroke("black"))
        goal = (context(), star(0.5, 1.0, -0.035, 5), fill("gold"), stroke("black"))
        bg = (context(), rectangle(), fill("white"))
        ctx = context(0.7, 0.05, 0.6, 0.9, mirror=Mirror(0, 0, 0.5))
        return compose(context(), (ctx, car, track, goal), bg)
    end
)

energize = FunctionPolicy(s->s[2] < 0.0 ? -1.0 : 1.0)
makegif(mountaincar, energize; filename="out.gif", fps=20)

POMDP Planning with Learned Components

[Deglurkar, Lim, Sunberg, & Tomlin, 2023]

Continuous \(A\): BOMCP

[Mern, Sunberg, et al. AAAI 2021]

Continuous \(A\): Voronoi Progressive Widening

[Lim, Tomlin, & Sunberg CDC 2021]

Storm Science

Human Behavior Model: IDM and MOBIL

\ddot{x}_\text{IDM} = a \left[ 1 - \left( \frac{\dot{x}}{\dot{x}_0} \right)^{\delta} - \left(\frac{g^*(\dot{x}, \Delta \dot{x})}{g}\right)^2 \right]
g^*(\dot{x}, \Delta \dot{x}) = g_0 + T \dot{x} + \frac{\dot{x}\Delta \dot{x}}{2 \sqrt{a b}}

M. Treiber, et al., “Congested traffic states in empirical observations and microscopic simulations,” Physical Review E, vol. 62, no. 2 (2000).

A. Kesting, et al., “General lane-changing model MOBIL for car-following models,” Transportation Research Record, vol. 1999 (2007).

A. Kesting, et al., "Agents for Traffic Simulation." Multi-Agent Systems: Simulation and Applications. CRC Press (2009).

All drivers normal

Omniscient

Mean MPC

QMDP

POMCPOW

Reappointment Seminar

By Zachary Sunberg

Reappointment Seminar

  • 91