A bit about me

Teaching is only half of my job...

Linux

Autonomous Decision and Control Laboratory

cu-adcl.org

  • Algorithmic Contributions
    • Scalable algorithms for partially observable Markov decision processes (POMDPs)
    • Motion planning with safety guarantees
    • Game theoretic algorithms
  • Theoretical Contributions
    • Particle POMDP approximation bounds
  • Applications
    • Space Domain Awareness
    • Autonomous Driving
    • Autonomous Aerial Scientific Missions
    • Search and Rescue
    • Space Exploration
    • Ecology
  • Open Source Software
    • POMDPs.jl Julia ecosystem

PI: Prof. Zachary Sunberg

PhD Students

Postdoc

Tweet by Nitin Gupta

29 April 2018

https://twitter.com/nitguptaa/status/990683818825736192

Example 1:
Autonomous Driving

Example 2: Tornados

Video: Eric Frew

Example 2: Tornados

Example 3: Search and Rescue

What do they have in common?

Driving: what are the other road users going to do?

Tornado Forecasting: what is going on in the storm?

Search and Rescue: where is the lost person?

All are sequential decision-making problems with uncertainty!

All can be modeled as a POMDP (with a very large state and observation spaces).

Markov Decision Process (MDP)

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward

Aleatory

\([x, y, z,\;\; \phi, \theta, \psi,\;\; u, v, w,\;\; p,q,r]\)

\(\mathcal{S} = \mathbb{R}^{12}\)

\(\mathcal{S} = \mathbb{R}^{12} \times \mathbb{R}^\infty\)

\[\underset{\pi:\, \mathcal{S} \to \mathcal{A}}{\text{maximize}} \quad \text{E}\left[ \sum_{t=0}^\infty R(s_t, a_t) \right]\]

Reinforcement Learning

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward

Aleatory

Epistemic (Static)

\([x, y, z,\;\; \phi, \theta, \psi,\;\; u, v, w,\;\; p,q,r]\)

\(\mathcal{S} = \mathbb{R}^{12}\)

\(\mathcal{S} = \mathbb{R}^{12} \times \mathbb{R}^\infty\)

Partially Observable Markov Decision Process (POMDP)

  • \(\mathcal{S}\) - State space
  • \(T:\mathcal{S}\times \mathcal{A} \times\mathcal{S} \to \mathbb{R}\) - Transition probability distribution
  • \(\mathcal{A}\) - Action space
  • \(R:\mathcal{S}\times \mathcal{A} \to \mathbb{R}\) - Reward
  • \(\mathcal{O}\) - Observation space
  • \(Z:\mathcal{S} \times \mathcal{A}\times \mathcal{S} \times \mathcal{O} \to \mathbb{R}\) - Observation probability distribution

Aleatory

Epistemic (Static)

Epistemic (Dynamic)

\([x, y, z,\;\; \phi, \theta, \psi,\;\; u, v, w,\;\; p,q,r]\)

\(\mathcal{S} = \mathbb{R}^{12}\)

\(\mathcal{S} = \mathbb{R}^{12} \times \mathbb{R}^\infty\)

Solving a POMDP

Environment

Belief Updater

Planner

\(a = +10\)

True State

\(s = 7\)

Observation \(o = -0.21\)

\(b\)

\[b_t(s) = P\left(s_t = s \mid b_0, a_0, o_1 \ldots a_{t-1}, o_{t}\right)\]

\[ = P\left(s_t = s \mid b_{t-1}, a_{t-1}, o_{t}\right)\]

\(Q(b, a)\)

\(O(|\mathcal{S}|^2)\)

Navigation among Pedestrians

[Gupta, Hayes, & Sunberg, AAMAS 2022]

Previous solution: 1-D POMDP (92s avg)

Our solution (65s avg)

State:

  • Vehicle physical state
  • Human physical state
  • Human intention

Meteorology

  • State: (physical state of aircraft, which forecast is the truth)
  • Action: (flight direction, drifter deploy)
  • Reward: Terminal reward for correct weather prediction

Drone Search and Rescue

State:

  • Location of Drone
  • Location of Human

Baseline

Our POMDP Planner

[Ray, Laouar, Sunberg, & Ahmed, ICRA 2023]

Drone Search and Rescue

[Ray, Laouar, Sunberg, & Ahmed, ICRA 2023]

Space Domain Awareness

(Result for simplified dynamical system)

State:

  • Position, velocity of object-of-interest
  • Anomalies: navigation failure, suspicious maneuver, thruster failure, etc.

Innovation: Large language models allow analysts to quickly specify anomaly hypotheses

Catalog Maintenance Plan

Partially Observable Stochastic Game (POSG)

Aleatory

Epistemic (Static)

Epistemic (Dynamic)

Interaction

  • \(\mathcal{S}\) - State space
  • \(T(s' \mid s, \bm{a})\) - Transition probability distribution
  • \(\mathcal{A}^i, \, i \in 1..k\) - Action spaces
  • \(R^i(s, \bm{a})\) - Reward function (cooperative, opposing, or somewhere in between)
  • \(\mathcal{O}^i, \, i \in 1..k\) - Observation spaces
  • \(Z(o^i \mid \bm{a}, s')\) - Observation probability distributions

POSG Example: Missile Defense

POMDP Solution:

  1. Assume a distribution for the missile's actions
  2. Update belief according to this distribution
  3. Use a POMDP planner to find the best defensive action

Nash equilibrium: All players play a best response to the other players

Fundamentally impossible for POMDP solvers to compute.

May include stochastic behavior (bluffing)

A shrewd missile operator will use different actions, invalidating our belief

Tree Search Algorithms for POSGs

[Becker & Sunberg, NeurIPS 2024 (Under Review)]

Thank You!

Funding orgs: (all opinions are my own)

VADeR

006-A-Bit-About-Me

By Zachary Sunberg

006-A-Bit-About-Me

  • 34