Structure
Parameters
Inputs
Outputs
Given that you have detected a trajectory deviation, and the battery has not failed what is the probability of a solar panel failure?
\(P(S=1 \mid D=1, B=0)\)
Exact
Approximate
\[P(S{=}1 \mid D{=}1, B{=}0)\]
\[= \frac{P(S{=}1, D{=}1, B{=}0)}{P(D{=}1, B{=}0)}\]
\[P(S{=}1, D{=}1, B{=}0) = \sum_{e, c}P(B{=}0, S{=}1, E{=}e, D{=}1, C{=}c)\]
\[P(B{=}0, S{=}1, E, D{=}1, C)\]
\[= P(B{=}0)\,P(S{=}1)\,P(E\mid B{=}0, S{=}1)\,P(D{=}1\mid E)\,P(C{=}1\mid E)\]
\(2^5= 32\) possible assignments, but quickly gets too large
\(2^5= 32\) possible assignments, but quickly gets too large
Product
Condition
Marginalize
Start with
Eliminate \(D\) and \(C\) (evidence) to get \(\phi_6(E)\) and \(\phi_7(E)\)
Eliminate \(E\)
Eliminate \(S\)
vs
Choosing optimal order is NP-hard
Analogous to
unweighted particle filtering
Analogous to
weighted particle filtering
Markov Chain Monte Carlo (MCMC)
Inputs
Outputs
For discrete R.V.s:
\[\text{dim}(\theta_X) = \left(|\text{support}(X)|-1\right)\prod_{Y \in Pa(X)} |\text{support}(Y)|\]
Maximum Likelihood
Bayesian
Multinomial:
Multinomial:
NP-Hard
Markov Equivalent iff
Inference
Learning